259 research outputs found

    Latent Heat Fluxes over Complex Terrain from Airborne Water Vapour and Wind Lidars

    Get PDF
    Tropospheric profiles of water vapour and wind were measured with a differential absorption lidar (DIAL) and a heterodyne detection Doppler wind lidar collo-cated onboard the DLR Falcon research aircraft in the past two years. The DIAL is a newly developed four-wavelength system operating on three water vapour absorption lines of different strengths, one offline wavelength at 935 nm (each 50 Hz, 40 mJ), and 532 and 1064 nm for aerosol profiling. It is designed as an airborne demonstrator for a possible future space-borne water vapour lidar mission. It operated success-fully during the Convective and Orographically-induced Precipitation Study (COPS) in July 2007 over the Black Forest Mountains in southern Germany, and during the Norwegian THORPEX-IPY field experiment in March 2008 over the European North Sea. For the study of summertime convection initiation over complex terrain and the development of Polar Lows in the North Sea both campaigns included latent heat flux missions where both airborne lidars were pointed nadir-viewing. Using eddy-correlation of the remotely-sensed wind and water vapour fluctuations, a repre-sentative flux profile can be obtained from a single over-flight of the area under investigation. The lidars’ spatial resolution is ~200 m which resolves the domi-nant circulation and flux patterns in a convective boundary layer. This novel instrumentation allows ob-taining profiles of the latent heat flux beneath the air-craft from one single over-flight of any area of interest

    Factors that influence the temporal variability of atmospheric methane emission from Upper Silesia coal mines: A case study from CoMet mission

    Get PDF
    Errors in assumed pollutant emission characteristics can significantly impact the magnitude of the estimated emissions constrained by instantaneous observations obtained with airborne or remote sensing instruments, especially on the local scale. Realistic emissions from individual point sources are a valuable input for numerical models, as by minimizing the errors stemming from inaccurate emissions, they could allow a better characterization of errors caused by transport mechanisms. Here we provide a detailed description of factors influencing the coal-mine methane emission variability, based on high-frequency (up to hourly) temporal data obtained from seven coal mines from the Upper Silesian Coal Basin during CoMet 1.0 (Carbon dioxide and Methane) mission which took place from May 14 to June 13, 2018. The knowledge of these factors for the particular ventilation shaft is essential for linking the observations achieved during the CoMet 1.0 with models, as most of the publicly available data in the bottom-up worldwide inventories provide annual emissions only. The methane concentrations in examined shafts ranged from 0.10 % to 0.55 % during the study period and were subject to a significant variation on a day-to-day basis due to the changing scope of mining works performed underground. The yearly methane average emission rate calculated based on temporal data of the analyzed subset of mines was of the order of 142.68 kt yr-1, an estimate lower by 27 % than the oficially published WUG (State Mining Authority) data and 36 % than reported to E-PRTR (European Pollutant Release and Transfer Register). Additionally, we found that emissions from individual coal mine facilities were over- or underestimated by between 4 % to 60 %, compared to E-PRTR, when short-term records were analysed. We show that the observed discrepancies between annual emissions based on temporal data and public inventories result from, firstly, the incorrect assumption that the methane concentrations in the time-invariant, secondly, from the methodology of measurements, and lastly, from frequency and timing of measurements. From the emission monitoring perspective, we recommend usage of a standardized emission measurement system for all coal mines, similar to the the SMP-NT/A methane fire teletransmission monitoring system (which most coal mines are equipped with). Such a system could, allow for gas flow quantification, necessary for accurate and precise estimations of methane emissions at high temporal resolution. Using this system will also reduce the emission uncertainty due to factors like frequency and timing of measurements. In addition, separating the emissions from individual ventilation shafts and methane drainage stations would be beneficial in closing the gap between bottom-up and top-down approaches for coal mine emissions, as the intermittent releases of unutilized methane from the drainage stations is currently not considered when constructing regional methane budgets.</p

    Development and application of an airborne differential absorption lidar for the simultaneous measurement of ozone and water vapor profiles in the tropopause region

    Get PDF
    A new, combined, lidar system has been developed that is able to simultaneously measure profiles of ozone and water vapor onboard aircraft. The concurrent measurement of these complementary trace species in the upper troposphere and lower stratosphere allows inferring exchange processes in the tropopause region. Whereas an advanced H2O differential absorption lidar at 935 nm has successfully been developed and extensively tested at DLR in the past, we describe here an amendment of this lidar by the addition of an ultraviolet (UV) channel to measure ozone. The transmitter of the ozone differential absorption lidar (DIAL) is based on a near-IR optical parametric oscillator that is frequency-converted into the UV spectral range by intracavity sum frequency mixing. Hereby, a continuous UV tuning range of ∌297–317  nm has been achieved. The average output power in this range is higher than 1 W corresponding to more than 10 mJ per pulse at a repetition rate of 100 Hz. The ozone DIAL system has been carefully characterized both on the ground and in flight. The first simultaneously measured two-dimensional cross-sections of ozone and water vapor in the upper troposphere and lower stratosphere have been recorded during the Wave-driven Isentropic Exchange (WISE) field campaign in 2017 demonstrating the high potential of this system for studying exchange processes in this region of the atmosphere

    Solidification and wetting behaviour of SnAgCu solder alloyed by reactive metal organic flux

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.PURPOSE: The purpose of this paper is to develop a new alloying method for solders by using a metal organic modified flux in solder pastes. DESIGN/METHODOLOGY/APPROACH: This paper presents the impact of six metal organic compounds (Co, Fe, Al; stearate, oxalate, citrate) on the melting and solidification behaviour in comparison to the revealed microstructure. FINDINGS: It could be shown that Co and Al influence the supercooling whereas Fe exhibits no effect. Co reduces the supercooling of the cast of about 10 K and affects the nucleation. Al retards the solidification up to 185°C. Doping of the solder by flux containing metal organic compounds is successful and the alloying elements Co and Fe are found in the microstructure. RESEARCH LIMITATIONS/IMPLICATIONS: This paper provides a starting‐point for the new alloying method – so far only fluxes for solder pastes have been investigated. ORIGINALITY/VALUE: The reactive alloying method enables the use of new alloying elements for solder pastes in unmodified soldering processes.BMBF, 03X4504A, Flussmittel mit nanochemisch aktiven Metallverbindungen zur Stabilisierung von Weichloten durch Dispersion - NanoFlu

    Latent Heat Flux Profiles from Collocated Airborne Water Vapor and Wind Lidars during IHOP_2002

    Get PDF
    Latent heat flux profiles in the convective boundary layer (CBL) are obtained for the first time with the combination of the DLR water vapor differential absorption lidar (DIAL) and the NOAA high resolution Doppler wind lidar (HRDL). Both instruments were integrated nadir viewing on board the DLR “Falcon” research aircraft during the International H2O Project (IHOP_2002) over the U.S. Southern Great Plains. Flux profiles from 300 – 2500 m AGL are computed from high spatial resolution (150 m horizontal and vertical) two-dimensional water vapor and vertical velocity lidar cross sections using the eddy covariance technique. All cospectra show significant contributions to the flux between 1 and 10 km wavelength, with peaks between 2 and 6 km, originating from large eddies. The main flux uncertainty is due to low sampling (55 % rmse at mid-CBL), while instrument noise (15 %) and systematic errors (7 %) play a minor role. The combination of a water vapor and a wind lidar on an aircraft appears as an attractive new tool that allows measuring latent heat flux profiles from a single over-flight of the investigated area

    Upconversion detector for range-resolved DIAL measurement of atmospheric CH<sub>4</sub>

    Get PDF
    We demonstrate a robust, compact, portable and efficient upconversion detector (UCD) for a differential absorption lidar (DIAL) system designed for range-resolved methane (CH4) atmospheric sensing. The UCD is built on an intracavity pump system that mixes a 1064 nm pump laser with the lidar backscatter signal at 1646 nm in a 25-mm long periodically poled lithium niobate crystal. The upconverted signal at 646 nm is detected by aphotomultiplier tube (PMT). The UCD with a noise equivalent power around 127 fW/Hz1/2 outperforms a conventional InGaAs based avalanche photodetector when both are used for DIAL measurements. Using the UCD, CH4 DIAL measurements have been performed yielding differential absorption optical depths with relative errors of less than 11% at ranges between 3 km and 9 k

    Random-modulation differential absorption lidar based on semiconductor lasers and single photon counting for atmospheric CO2 sensing

    Full text link
    Carbon dioxide (CO2) is the major anthropogenic greenhouse gas contributing to global warming and climate change. Its concentration has recently reached the 400-ppm mark, representing a more than 40 % increase with respect to its level prior to the industrial revolution. However, the exchanges of CO2 between the atmosphere and the natural or anthropogenic sources/sinks at the Earth’s surface are still poorly quantified. A better understanding of these surface fluxes is required for appropriate policy making. At present, the concentrations of CO2 are mainly measured in-situ at a number of surface stations that are unevenly distributed over the planet. Air-borne and spaceborne missions have the potential to provide a denser and better distributed set of observations to complement this network. In addition to passive measurement techniques, the integrated path differential absorption (IPDA) lidar technique [1] has been found to be potentially suited for fulfilling the stringent observational requirements. It uses strong CO2 absorption lines in the 1.57 or in the 2 ÎŒm region and the backscatter from the ground or a cloud top to measure the column averaged CO2 mixing ratio (XCO2) with high precision and accuracy. The European Space Agency (ESA), has studied this concept in the frame of the Advanced Space Carbon and Climate Observation of Planet Earth (A-SCOPE) mission in 2006. Although a lack of technological readiness prevented its selection for implementation, recommendations have been formulated to mature the instrument concept by pursuing technological efforts [2]. During the last years, a tremendous effort in the assessment of the optimal CO2 active sensing methodology is being performed in the context of NASA mission Active Sensing of CO2 Emissions over Nights, Days, and Season (ASCENDS

    Local-to-regional methane emissions from the Upper Silesian Coal Basin (USCB) quantified using UAV-based atmospheric measurements

    Get PDF
    Coal mining accounts for ~12% of the total anthropogenic methane (CH4) emissions worldwide. The Upper Silesian Coal Basin (USCB), Poland, where large quantities of CH4 are emitted to the atmosphere via ventilation shafts of underground hard coal (anthracite) mines, is one of the hot spots of methane emissions in Europe. However, coal bed CH4 emissions into the atmosphere are poorly characterized. As part of the carbon dioxide and CH4 mission 1.0 (CoMet 1.0) that took place in May-June 2018, we flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 and CO2 mole fractions 150-300m downwind of five individual ventilation shafts in the USCB. In addition, we also measured ÎŽ13C-CH4, ÎŽ2H-CH4, ambient temperature, pressure, relative humidity, surface wind speed, and surface wind direction. We used 34 UAV flights and two different approaches (inverse Gaussian approach and mass balance approach) to quantify the emissions from individual shafts. The quantified emissions were compared to both annual and hourly inventory data and were used to derive the estimates of CH4 emissions in the USCB. We found a high correlation (R2Combining double low line0.7-0.9) between the quantified and hourly inventory data-based shaft-averaged CH4 emissions, which in principle would allow regional estimates of CH4 emissions to be derived by upscaling individual hourly inventory data of all shafts. Currently, such inventory data is available only for the five shafts we quantified. As an alternative, we have developed three upscaling approaches, i.e., by scaling the European Pollutant Release and Transfer Register (E-PRTR) annual inventory, the quantified shaft-averaged emission rate, and the shaft-averaged emission rate, which are derived from the hourly emission inventory. These estimates are in the range of 256-383ktCH4yr-1 for the inverse Gaussian (IG) approach and 228-339ktCH4yr-1 for the mass balance (MB) approach. We have also estimated the total CO2 emissions from coal mining ventilation shafts based on the observed ratio of CH4/CO2 and found that the estimated regional CO2 emissions are not a major source of CO2 in the USCB. This study shows that the UAV-based active AirCore system can be a useful tool to quantify local to regional point source methane emissions
    • 

    corecore